Total Zn and Cd uptake was calculated using Eq. (3) and Eq. (4), respectively. ¹¹⁰Cdsample and ⁶⁷Zn_{Sample} are the particulate ¹¹⁰Cd and ⁶⁷Zn measured by ICP-MS analysis of the 3µm sample filter, normalized to the total culture volume (275 mL) and 24hr of incubation. ¹¹⁰Cd_{Sample} and ⁶⁷Zn_{Sample} already in the particulate fraction (that is, the pCd and pZn that existed in the water column upon collection of the raw seawater samples) was accounted for by subtracting the particulate blank, ¹¹⁰Cd_{Blank} and ⁶⁷Zn_{Blank}. ¹¹⁰Cd_{Blank} and ⁶⁷Zn_{Blank} will hereafter be referred to as "pre-existing particulate ¹¹⁰Cd and ⁶⁷Zn". The pre-existing particulate blank value for ¹¹⁰Cd was obtained from incubation bottles that had Zn added, but no Cd spike. Likewise, the pre-existing particulate blank value for ⁶⁷Zn was obtained from incubation bottles that had Cd added, but no Zn spike. The ⁶⁷Zn spike solution was confirmed to contain virtually no ¹¹⁰Cd, ¹¹¹Cd, ¹¹⁴Cd. The ¹¹⁰Cd spike was likewise confirmed to contain virtually no ⁶⁷Zn, ⁶⁴Zn, ⁶⁶Zn. As a result, we assumed that the added ⁶⁷Zn spike did not affect the pre-existing Cd, nor did the ¹¹⁰Cd spike affect the pre-existing Zn. It is assumed that the pre-existing particulate blank was in steady state, i.e. that it represented the Cd or Zn already in the particulate fraction and any possible natural uptake that could occur during incubation for 24h was negligible. The total dissolved pool of each metal isotope (denominator of each equation) is the sum of the dissolved ¹¹⁰Cd or ⁶⁷Zn added as the spike (¹¹⁰Cds_{pike}, ⁶⁷Zns_{pike}) plus the natural, pre-existing dissolved ¹¹⁰Cd or ⁶⁷Zn that was in the raw seawater (¹¹⁰Cd_{Natural}, ⁶⁷Zn_{Natural}) collected at each depth. To calculate ¹¹⁰Cd_{Natural} and ⁶⁷Zn_{Natural}, the total dissolved Cd or Zn measured by isotope dilution-ICP-MS (Cd_{Total}, Zn_{Total}) was multiplied by the natural abundance of ¹¹⁰Cd and ⁶⁷Zn (12.49% and 4.10%, respectively). Dividing the particulate ¹¹⁰Cd and ⁶⁷Zn by the total dissolved ¹¹⁰Cd and ⁶⁷Zn yields the fraction of these metal isotopes that moved from the dissolved pool to the particulate pool per day.

$$\frac{Cd_{total} Uptake Rate}{(pmol L^{-1} d^{-1})} = \frac{\left[\frac{^{110}Cd_{Sample} (pmol L^{-1} d^{-1}) - ^{110}Cd_{Blank} (pmol L^{-1} d^{-1})\right]}{\left[\frac{^{110}Cd_{Spike} (pmol L^{-1}) + ^{110}Cd_{Natural} (pmol L^{-1})\right]}{(pmol L^{-1} d^{-1})} X Cd_{total} (pmol L^{-1}) \\ (3)$$

$$\frac{Zn_{total} Uptake Rate}{(pmol L^{-1} d^{-1})} = \frac{\left[\frac{^{67}Zn_{Sample} (pmol L^{-1} d^{-1}) - ^{67}Zn_{Blank} (pmol L^{-1} d^{-1})}{[^{67}Zn_{Spike} (pmol L^{-1}) + ^{67}Zn_{Natural} (pmol L^{-1})]} X Zn_{total} (pmol L^{-1}) \\ (4)$$