PE21_18_Thrash: Microbial DO respir

Detailed cruise plan

Ship/port
R/V Pelican
Departure: Louisiana Universities Marine Consortium (LUMCON), Cocodrie, LA
Return: LUMCON

Dates
Mobilization: 4/26/21
Departure: 4/27/21
Return: 5/02/21
Demobilization: 5/03/21
Duration: 6 days at sea

Science party
J. Cameron Thrash, Ph.D., Chief Scientist
Jordan T. Coelho, Ph.D. student
University of Southern California

Waypoints

<table>
<thead>
<tr>
<th>Station</th>
<th>Lat</th>
<th>Long</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C6C</td>
<td>28.8686</td>
<td>-90.4903</td>
<td>19.2</td>
</tr>
<tr>
<td>D2</td>
<td>28.8417</td>
<td>-90.8333</td>
<td>15.6</td>
</tr>
<tr>
<td>D4</td>
<td>28.6083</td>
<td>-90.8333</td>
<td>19.1</td>
</tr>
<tr>
<td>E3</td>
<td>28.6583</td>
<td>-91.25</td>
<td>22</td>
</tr>
<tr>
<td>F4</td>
<td>28.7833</td>
<td>-91.6167</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Cruise track and timing
We will proceed from LUMCON to station C6C, conduct science operations (detailed below), then proceed to D2, D4, E3, and finally F4, repeating scientific operations at each station. After operations are concluded at station F4, we will sail back to LUMCON. The table below contains approximate distances and travel times for this cruise track.

<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Approx. distance (n miles)</th>
<th>Approx. transit time (@ 8 kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUMCON</td>
<td>C6C</td>
<td>26</td>
<td>3 hr 15 min</td>
</tr>
<tr>
<td>C6C</td>
<td>D2</td>
<td>18</td>
<td>2 hr 20 min</td>
</tr>
<tr>
<td>D2</td>
<td>D4</td>
<td>14</td>
<td>1 hr 45 min</td>
</tr>
<tr>
<td>D4</td>
<td>E3</td>
<td>22</td>
<td>2 hr 45 min</td>
</tr>
<tr>
<td>E3</td>
<td>F4</td>
<td>21</td>
<td>2 hr 40 min</td>
</tr>
<tr>
<td>F4</td>
<td>LUMCON</td>
<td>72</td>
<td>9 hr</td>
</tr>
</tbody>
</table>
Science operations

At each station, we will be performing casts of the CTD/Niskin rosette to collect a station water column profile and discreet water samples at the bottom (variable) and at the surface (2 m). We will use half the Niskins for bottom water collection, and half for surface water collection.

Water will be apportioned for filtration, flow cytometry, bottle incubations, and cryostocks, according to the *Science operations schematic* on the next page. We will be conducting bottom water incubations in an electric dry cold incubator that we will bring with us. Surface water incubations will be conducted in a light-proof tub connected to the surface water flow through system in the aft starboard section of the main lab.

Once incubations have begun and sufficient water has been collected for filtration, we can leave the station and begin transit to the next if necessary. The longest incubations will be for the respiration measurements (up to 24 hrs), but we have two sets of bottles so that we can begin a second set of incubations before the first set concludes. Thus, our only limiting factor for collection at a new station is whether the incubations from two prior stations has finished. However, given the relatively short transit times and the fact that we only have 5 planned stations, we anticipate staying on station for most of each day, and we may elect to perform additional CTD/Niskin rosette casts for additional sample filtration.

Liquid N2. Many of our material collections will be placed in cryovials and then stored in liquid N2. Liquid N2 will be housed in two specialized dewars that will remain in the main lab. These will be filled on the dock during mobilization and again upon return during demobilization. Marshall Kormanec will order the parent liquid N2 dewars for delivery prior to those days.

Hazardous Materials. In addition to the liquid N2, the other hazardous materials we will be bringing are glutaraldehyde (25%), hydrochloric acid (38%), and sodium hydroxide (5N). Glutaraldehyde will be used as a fixative for negative controls in our respiration and redox sensor green incubations. It will be diluted into stock solutions, and these will be added to incubation bottles either in the fume hood or outside on the deck. Hydrochloric acid and sodium hydroxide will be diluted to 0.1N for use in cleaning/sterilizing filtration tubing and incubation bottles. All three of these chemicals will be stored in secondary containment in their concentrated form.
Science operations schematic
See science party for protocols covering A-E

GF/F 0.7 µm
DOM -20°C freezer

GF/D 2.7 µm Sterivex 0.22 µm
Nutrients -20°C freezer

GF/D 2.7 µm
Cell counts

GF/D 2.7 µm
Planktonic
Whole
Dark incubate

BONCAT
Dark incubate
GF/D 2.7 µm Planktonic

RSG
Dark incubate
GF/D 2.7 µm Planktonic

For DTE cultivation

120 mL serum bottle
120 mL serum bottle w/ optodes
2 mL serum bottle
cyrovial - deposited in Liquid N₂
syringe + filter housing